
The 2025 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM25)
BEXCO, Busan, Korea, August 11-14, 2025

  

 
 
 

Predicting tunnel squeezing prior to excavation using machine 
learning and support pattern 

 

*Hyoung-Seok Oh1) , Joon-Shik Moon2) 

 
1), 2) Department of Civil Engineering, Kyungpook National University, Daegu 41566, 

Korea 
1) 

 j.moon@knu.ac.kr 
 
 
 

ABSTRACT 
 

Tunnel squeezing, a time‐dependent deformation phenomenon arising when in‐situ 
stress exceeds rock compressive strength, poses significant challenges for structural 
stability and operational safety. To predict squeezing prior to tunnel excavation, this study 
selected parameters for overburden depth (H), tunnel diameter (D), rock mass quality 
index (Q), Rock Mass Rating (RMR), and the support stiffness (K) that could be 
obtainable during the design phase. In addition, this study calculated K values based on 
standard support patterns rather than those previously employed. To predict squeezing, 
SVM, MLP, Random Forest, and Gradient Boosting models were employed, and data 
preprocessing was carried out using SMOTE oversampling. The Gradient Boosting 
model achieved the highest accuracy at 90.48%, followed by Random Forest at 85.71%, 
Support Vector Machine at 76.19%, and Multilayer Perceptron at 71.43%. Finally, SHAP 
analysis demonstrated that RMR, D, Q, H, and K, in descending order, exert the influence 
on squeezing prediction.  
 
1. INTRODUCTION 
 

Deformation caused by squeezing in tunnels can inflict significant damage on the long-
term structural stability of tunnels. Squeezing occurs when the stress loading on the rock 
mass exceeds its uniaxial compressive strength. Aydan et al. (1993) classified the failure 
modes due to squeezing into three types: (1) complete shear failure accompanied by 
spalling and sudden slabbing of the surrounding rock, (2) buckling failure occurring in 
metamorphic or thinly layered ductile sedimentary rocks, and (3) shear and sliding 
failures commonly observed in thick-bedded sedimentary rocks. Factors contributing to 
squeezing include tunnel diameter, tunnel shape, overburden depth, lateral pressure 
coefficient, rock strength, the presence of fault zones, installation of support systems, 
and tunnel closure. Squeezing in tunnels is a time-dependent deformation phenomenon 
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that can occur immediately after excavation or develop gradually over several years, 
leading to construction delays, increased costs, stability issues during construction, and 
significant maintenance burdens during tunnel operation. 

 To address these issues, many researchers have attempted to predict squeezing in 
advance. Methods for predicting squeezing can be broadly classified into geological 
classification methods, methods based on critical stress and strain, methods based on 
flow characteristics, and other approaches. Among these, the method proposed by 
Jethwa et al. (1984), which uses the ground strength constant 𝑁𝑐  calculated as the 
uniaxial compressive strength divided by unit weight multiplied by overburden depth, is 
widely used for predicting squeezing. For strain-based methods, the method proposed 
by Hoek and Marinos (2000), which classifies squeezing into five categories based on 
the strain ε exceeding 1, is commonly used. However, these conventional methods often 
show reduced accuracy and limitations in advance prediction in fault zones or regions 
with very high overburden depth. 

To overcome these limitations, recent studies have proposed the use of machine 
learning approaches for squeezing prediction. Table 1. Summarizes previous studies that 
have utilized machine learning for predicting tunnel squeezing. Jimenez and Recio (2010) 
predicted squeezing using a linear classification model that classified data based on 
overburden depth (H) and rock mass quality index (Q). Shafiei et al. (2012) utilized a 
support vector machine (SVM) model, which finds hyperplanes maximizing the distance 
between classes in n-dimensional space, to predict squeezing. Subsequently, Huang et 
al (2021) conducted studies to improve prediction accuracy by combining a 
backpropagation neural network with SVM models using parameters for tunnel diameter 
(D) and support stiffness (K), in addition to (H) and (Q). Zhou et al. (2022) further 
improved prediction accuracy through hyperparameter tuning using the Whale 
Optimization Algorithm inspired by whale foraging behavior. Sun et al (2018) used a 
multiclass SVM model to classify squeezing into three stages based on strain: no 
squeezing when ε < 1, minor squeezing when 1 ≤ ε < 2.5, and extreme squeezing when 
ε ≥ 2.5. Chen et al. (2020) predicted squeezing in three stages using a decision tree (DT) 
model. Zhang et al. (2020) conducted research to improve accuracy by ensembling 
multiple algorithms, including BPNN, SVM, DT, KNN, LR, MLR, and NB. Peng et al. 
(2025) preprocessed data using the SMOTE technique and predicted squeezing using 
SVM, RF, DT, XGBoost, LGBM, and KNN models. 

 To date, these studies have primarily focused on improving the prediction accuracy 
by enhancing machine learning algorithm models. However, the datasets used in 
previous studies have typically been constructed by combining additional field data with 
data collected from various countries. There is insufficient examination of the 
appropriateness of using the distribution of data collected from different countries as a 
database for squeezing prediction. Therefore, this study aims to review the 
appropriateness of the datasets used in previous research and utilize suitable data to 
predict squeezing using various classification algorithms. 
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Table 1 Classification comparison of existing prediction models (Zhou et al. 2022) 

Authors Classifiers Parameters Classes 

Jimenez & Recio LC H, Q 2 

Shafiei et al. SVM H, Q 2 

Sun et al. M-SVM H, Q, D, K 3 

Chen et al. DT H, D, K, SSR, GC 3 

Zhang et al. Ensemble (BPNN, SVM, DT, KNN, 
LR, MLR, NM) 

H, Q, D, K, SSR 2 

Huang et al. SVM-BP H, Q, D, K 2 

Zhou et al. SVM-WOA H, Q, D, K, ε 2 

Peng et al. SVM, DT, RF, XGBoost, LGB, KNN H, Q, D, SSR, K 2 
 

2. DATA ANALYSIS 
 

This study utilized the open dataset provided by Zhou et al. (2022). In this study, 
parameters (H), (Q), (D), (RMR) and (K) that can be obtained prior to tunnel construction 
were selected for analysis. (H) represents the overburden depth of the tunnel, and (Q) 
and (D) are calculated as shown in Eq. (1) and (2) 
 

                                            𝑄 = (
𝑅𝑄𝐷

𝐽𝑛
) ∗ (

𝐽𝑟

𝐽𝑎
) ∗ (

𝐽𝑤

𝑆𝑅𝐹
)      (1) 

 

                                          𝐷 =  √4𝐴/𝜋      (2) 
 

(RQD = Rock quality designation, 𝐽𝑛 = joint set number, 𝐽𝑟 = joint roughness number, 𝐽𝑎 = joint alteration 

number, 𝐽𝑤 = joint water reduction factor, SRF = stress reduction factor.) 
The support stiffness (K) is calculated as the sum of the stiffness of shotcrete, rock 

bolts, and steel sets, as shown in Equation (3), while the calculation formulas for each 
are presented in Eq. (4), (5), (6) and (7). 

𝐾 = 𝐾𝑠(𝑠ℎ𝑜𝑡) + 𝐾𝑠(𝑏𝑜𝑙) + 𝐾𝑠(𝑠𝑒𝑡)    (3) 

𝐾𝑠(𝑠ℎ𝑜𝑡) =
𝐸𝑠ℎ𝑜𝑡

(1+𝜇𝑠ℎ𝑜𝑡)
∙

[𝑎2−(𝑎−𝑡𝑠ℎ𝑜𝑡)2]

[(1−2𝜇𝑠ℎ𝑜𝑡)𝑎2+(𝑎−𝑡𝑠ℎ𝑜𝑡)2]
∙

1

𝑎
  (4) 

𝐾𝑠(𝑏𝑜𝑙) =
1

𝑠𝑡𝑠𝑙∙[
4𝐿𝑏𝑜𝑙

𝜋𝜙2𝐸𝑠𝑡
+𝑄]

     (5) 

                                                𝐾𝑠(𝑠𝑒𝑡) =
𝐸𝑠𝑡∙𝐴𝑠𝑒𝑡

𝑑[𝑎−
ℎ𝑠𝑒𝑡

2
]2

      (6) 

                                                             𝐾𝑠(𝑠𝑒𝑡) = 𝑝
𝑎

𝑢
      (7) 

(𝐸𝑠ℎ𝑜𝑡  = elastic modulus of shotcrete, 𝜇𝑠ℎ𝑜𝑡  = Poisson’s ratio of shotcrete, 𝑎 = radius of tunnel, 𝑡𝑠ℎ𝑜𝑡  = 

thickness of shotcrete, 𝑠𝑡 = circumferential spacing of rock bolts, 𝑠𝑙 = longitudinal spacing of rock bolts, 
𝐿𝑏𝑜𝑙  = length of rock bolts, 𝜙 = diameter of rock bolts, 𝐸𝑠𝑡  = elastic modulus of rock bolts, 𝑄 = a load-

displacement constant, 𝐸𝑠𝑡 = elastic modulus of steel sets, 𝐴𝑠𝑒𝑡 = area of steel sets, 𝑑 = distance of steel 

sets, ℎ𝑠𝑒𝑡 = height of steel sets, 𝑝 = monitored radial support pressure, 𝑢 = measured radial deformation)  
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Table 2 NATM Tunnel support pattern (Park et al. 2018) 

Classification TYPE A TYPE B-1 TYPE B-2 TYPE C-1 

Support Pattern Overview 

    

Rock Mass Classification / Ground Condition 
ClassI / 

RMR≥81 

ClassII / 

80≥RMR≥71 

ClassII / 

70>RMR≥61 

ClassIII / 

60>RMR≥51 

Excavation Method, Advance Length(Crown/Invert), 

Support length(Crown/Invert) 

Fullface, ≥4.0m, 

4.0m 

Fullface, 4.0m, 

4.0m 

Fullface, 3.5m, 

3.5m 

Fullface, 3.0m, 

3.0m 

S

U

P
P

O

R
T 

Shotcrete 
Type, 

Sealing/Primary/Secondary(mm) 
Ordinary, 
50/50/– 

Steel fiber, 
50/50/– 

Steel fiber, 
50/60/– 

Steel fiber, 
75/80/– 

Rock Bolt 
Length(m), Longitudinal/Transverse 

Spacing(m) 

3.0, 

Random/Rando
m 

3.0, 4.0/2.5 3.0, 3.5/2.0 4.0, 3.0/1.8 

Steel Support Section, Longitudinal Spacing(m) - - - - 

Concrete   

Lining 
Type, Thickness(mm) 

Unreinforced, 

300 

Unreinforced, 

300 

Unreinforced, 

300 

Unreinforced, 

300 

Classification TYPE C-2 TYPE D-1 TYPE D-2 

Support Pattern Overview 

   

Rock Mass Classification / Ground Condition ClassIII / 50>RMR≥41 ClassIV / 40>RMR≥31 ClassIV / 30>RMR≥21 

Excavation Method, Advance Length(Crown/Invert), 
Support length(Crown/Invert) 

Full face, 2.5m, 2.5m Full face, 2.0m, 2.0m 
Benchcut,1.5m/3.0m,1.

5m/3.0m 

S
U

P

P
O

R

T 

Shotcrete 
Type, 

Sealing/Primary/Secondary(mm) 
Steel fiber, 75/90/– Steel fiber, 100/80/40 Steel fiber, 100/80/40 

Rock Bolt 
Length(m), Longitudinal/Transverse 

Spacing(m) 
4.0, 2.5/1.5 4.0, 2.0/1.5 4.0, 1.5/1.5 

Steel Support Section, Longitudinal Spacing(m) 
As required (L/G -

50×20×30), 2.5 
L/G -50×20×30, 2.0 L/G -50×20×30, 1.5 

Concrete 

Lining 
Type, Thickness(mm) Unreinforced, 300 Unreinforced, 300 

Reinforced as required, 

300 

Classification TYPE E-1 TYPE E-2 TYPE G-1 

Support Pattern Overview 

   

Rock Mass Classification / Ground Condition ClassV /20> RMR≥11 ClassV / RMR≤10 
End of NATM 

excavation 

Excavation Method, Advance Length(Crown/Invert), 

Support length(Crown/Invert) 

Benchcut, 1.2m/2.4m, 

1.2m/2.4m 

Benchcut, 1.2m/1.2m, 

1.2m/1.2m 

Benchcut, 1.0m/1.0m, 

1.0m/1.0m 

S
U

P

P
O

R

T 

Shotcrete 
Type, 

Sealing/Primary/Secondary(mm) 
Steel fiber, 100/100/60 Steel fiber, 100/100/60 Steel fiber, 100/100/60 

Rock Bolt 
Length(m), Longitudinal/Transverse 

Spacing(m) 
4.0, 1.5/1.2~1.5 4.0, 1.5/1.5 4.0, 1.0/1.5 

Steel Support Section, Longitudinal Spacing(m) L/G -70×20×30, 1.2 H -100×100×6×8, 1.2 H -100×100×6×8, 1.0 

Concrete 
Lining 

Type, Thickness(mm) Reinforced, 300 Reinforced, 300 Reinforced, 300 
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Table 3 Material properties used for support system 

TYPE 𝐸𝑠ℎ𝑜𝑡(MPa) 𝐸𝑠𝑡(MPa) 𝜇𝑠ℎ𝑜𝑡 𝜙(m) 𝑄(m/MN) 

A~B-2 15,000 210,000 0.2 0.022 0.042 

C-1~G-1 15,000 210,000 0.2 0.025 0.143 

 
In this paper, the support stiffness K were calculated with Eq.3 and compared against 

open-source data. Table 2 shows the Ex-TM standard support patterns for tunnel 
construction proposed by the Korea Expressway Corporation, while Table 3 lists the 
material properties used for support system. 
 
Table 4 Performance of different classifiers at many problems in minor change (Zhou et 
al. 2022) 

Tunnel Rock type H(m) Q D(m) K(MPa) 

Chameliya hydroelectric project Talcose 
phyllite 

210.8 0.01 5.4 1575.72 

Maneri stage tunnel Sheared 
metabasics 

450 0.31 5.8 5.1 

Chenani-Nashri escape tunnel Siltstone, silty 
claystone 

733 2.903 6.0 6.25 

Maneri-Bhali hydroproject Fractured 
quartzite 

225 3.6 4.8 1000 

 
Table 5 Support stiffness for each support pattern  

TYPE K(MPa/m) TYPE K(MPa/m) 

A 63.45 D-1 157.39 

B-1 64.70 D-2 162.48 

B-2 71.69 E-1 202.74 

C-1 100.17 E-2 202.86 

C-2 117.93 G-1 210.22 

Table 4, which forms part of the open dataset, lists K values for tunnels with diameters 
between 4.8 m and 6 m. A tunnel with an overburden of 225 m, Q value = 3.6, and tunnel 
diameter = 4.8 m records K=1000 MPa, whereas another tunnel with an overburden of 
450 m, Q-value = 0.31, and tunnel diameter = 5.8 m shows K=5.1 MPa despite poorer 
rock conditions. These different come from using different Equation to calculate the steel 
sets stiffness 𝐾𝑠(𝑠𝑒𝑡). Eq. 6 assesses 𝐾𝑠(𝑠𝑒𝑡) from the distance of steel sets, height of steel 

sets and elastic modulus of steel sets that measured before excavation, whereas Eq. 7 
assesses 𝐾𝑠(𝑠𝑒𝑡) from the monitored radial support pressure and measured radial 

displacement that measured after excavation. Consequently, to predict tunnel squeezing 
prior to excavation, this study recalculated the K values with Equation 6. Table 5 presents 
the K values for the Ex-TM support patterns in a 5 m-diameter tunnel. The calculated 
range extends from 63.42 MPa/m for type A to 210.22 MPa/m for type G-1. In this study, 
the analysis employs the Ex-TM K values assigned to each support pattern according to 
the corresponding RMR rating.  
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3. PREDICTION MODELS 
  

3.1 Synthetic Minority Over-sampling Technique (SMOTE) 
 
Severe class imbalance skews the empirical distribution toward majority-class regions, 
causing decision boundaries to underrepresent minority instances. Let the feature space 

be X ⊂ R. For any minority sample xᵢ∈X, its set of k nearest minority neighbors is N_k(xᵢ) 

= {xᵢ,(1), …, xᵢ,(k)}, where k∈N denotes the neighbor count. Eq.8 indicates that SMOTE 

chooses one neighbor xᵢ,(k) uniformly from this set and creates a synthetic point where 

λ ∈ [0, 1] is the interpolation coefficient. 

x ̃= xᵢ + λ (xᵢ,(k) − xᵢ), λ ~ U(0, 1)   (8) 
 

Because x ̃ lies on the line segment joining the two real observations, the synthetic 
instance remains inside the local convex hull, thereby expanding minority density without 

inventing out-of-manifold artefacts and pushing the empirical-risk gradient ∇R̂ toward the 

minority side. 
The variables k and λ jointly control synthesis aggressiveness. A small k tightens 

synthesis around high-density cores, preserving cluster compactness but risking 
sensitivity to noise; a large k blends distant neighbors, smoothing the frontier while 
potentially obscuring hidden submodes. The coefficient λ determines where the synthetic 
point falls: values near 0 emphasize the cluster interior (increasing precision), whereas 
values near 1 favor the cluster boundary (increasing recall). A uniform λ distributes 
samples evenly; alternative distributions (e.g., Beta(2,5)) can bias synthesis toward the 
frontier when minority recall is paramount. 
 

3.2 Support Vector Machine 
 

Support Vector Machine (SVM) maximises the margin between classes as described 
in Eq. (9). The soft-margin formulation is compactly written in Eq. (10) without explicit 
optimisation keywords. The Gaussian RBF kernel employed is stated in Eq. (11), and 
Platt scaling for probability calibration appears in Eq. (12). 
 

𝑓(𝑥) =  𝑤𝑇𝜑(𝑥) + 𝑏 = 0   (9) 
 

½‖w‖²+c∑ ξ𝑖, 𝑦𝑖{𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − ξ𝑖  ,ξ𝑖 ≥ 0  (10) 
 

𝐾(𝑥𝑝, 𝑥_𝑞) = exp (−𝛾‖𝑥𝑝 − 𝑥_𝑞‖
2

)   (11) 

 

𝑃(𝑦 = 1|𝑓(𝑥)) = 1/(1 + exp(𝐴𝑓(𝑥) + 𝐵))   (12) 

 
Eq. (9) defines the separating hyperplane in feature space. Eq. (10) shows the 

soft-margin objective and its constraints in a single block, where C governs the trade-off 
between margin width and empirical error. Eq. (11) gives the RBF kernel with bandwidth 
γ, and Eq. (12) converts decision scores into calibrated probabilities. 
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3.3 Gradient Boosting 
 
Gradient Boosting is an ensemble technique that sequentially combines weak learners, 
typically shallow decision trees, to build a powerful predictive model. The process 
begins by initializing the model with a constant function 𝐹0(𝑥) that minimizes the loss 
function  𝐿. At each iteration 𝑚, pseudo-residuals for each sample 𝑟𝑖 are computed as 
Eq. (13) 

𝑟𝑖𝑚 = −
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
|

𝐹=𝐹𝑚−1

   (13) 

A new decision tree ℎ𝑚(𝑥) is trained to predict these residuals, and the model is 
updated using a line search to find the optimal coefficient 𝛾𝑚 using Eq. (14) 
 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥)    (14) 
 
This procedure is mathematically equivalent to performing gradient descent in function 
space and is based on Friedman’s Gradient Boosting Machine (Friedman, 2001). 
Mathematically, Gradient Boosting optimizes the loss function by iteratively adding 
weak learners that approximate the negative gradient of the loss. After computing the 
pseudo-residuals, the new tree’s predictions are scaled by 𝛾𝑚, determined by Eq. (15) 
 

𝐹𝑚+1(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥),     𝛾𝑚 = arg 𝑚𝑖𝑛
𝛾

∑ 𝐿(𝑦𝑖, 𝐹𝑚(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))𝑛
𝑖=1  (15) 

 
3.4 Random Forest 
 

 
Random forest, as formalized by Breiman (2001), is an ensemble learning method that 

constructs a multitude of decision trees using independent bootstrap samples drawn with 
replacement from the original dataset; final predictions are obtained via majority voting 
for classification or averaging for regression. The algorithm guarantees asymptotic 
convergence of the generalization error as the number of trees M grows without bound, 
thereby mitigating the overfitting tendencies of single decision trees and ensuring stability 
in large ensembles (Breiman, 2001). 
Training proceeds by combining bootstrap aggregating bagging which generates M 

bootstrap replicas of the training set with the random subspace method, whereby at each 

split a random subset of features (√𝑝 features for classification, where 𝑝 is the total 

number of predictors) is considered. This dual randomness sampling observations and 
features decorrelates individual trees, leading to substantial variance reduction in the 
aggregate model without increasing bias (Ho, 1998; Breiman, 2001). 
The random forest framework offers robust handling of high-dimensional data without 

requiring prior feature scaling or distributional assumptions, intrinsic estimation of out-of-
bag error for unbiased performance assessment, and measures of variable importance 
to identify key predictors. However, training and evaluating hundreds or thousands of 
deep trees incurs significant computational and memory demands, and the ensemble’s 
complexity reduces interpretability relative to individual decision trees (Hastie et al., 
2009). 
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3.5 Multi-Layer Perceptron 
 
Multilayer perceptron (MLP) is a feedforward artificial neural network architecture 

comprising an input layer, one or more hidden layers of nonlinear neurons, and an output 
layer. Each neuron computes a weighted sum of its inputs plus a bias term and applies 
a nonlinear activation function (e.g., sigmoid, ReLU) to produce its output, enabling the 
modeling of complex, nonlinearly separable patterns. 
In the training phase, MLPs minimize a differentiable loss function (such as cross-

entropy for classification or mean squared error for regression) via backpropagation 
paired with gradient-based optimization algorithms (e.g., stochastic gradient descent, 
Adam). During each iteration, the error gradient is propagated backward through the 
network to adjust weights and biases, and hyperparameters such as learning rate, mini-
batch size, and initialization schemes critically influence convergence and generalization 
performance. 
By virtue of the universal approximation theorem, an MLP with a single hidden layer of 

sufficient width can approximate any continuous function on a compact domain. MLPs 
are well-suited for tabular data tasks but can exhibit vanishing or exploding gradient 
issues in deeper architectures, which necessitates the use of regularization techniques 
(e.g., dropout, weight decay) and advanced activation functions. Furthermore, for spatial 
data such as images or sequences, convolutional or recurrent architectures often 
demonstrate superior efficiency and representational power. 
 

3.6 Shapley Additive exPlanations 
 

SHAP (Shapley Additive exPlanations) is a model interpretation framework introduced 
by Lundberg and Lee (2017) that leverages Shapley values from cooperative game 
theory to quantify each feature’s contribution to individual predictions. SHAP uniquely 
satisfies the properties of consistency, local accuracy, and missingness among additive 
feature attribution methods, providing a unified explanation framework. 
Despite the combinatorial complexity of exact Shapley value computation, SHAP 

addresses computational challenges through Kernel SHAP an agnostic approximation 
method using weighted linear regression and TreeSHAP, an exact polynomial-time 
algorithm optimized for tree ensemble models including XGBoost, LightGBM, CatBoost, 
and scikit-learn’s RandomForest and GradientBoosting implementations. 
SHAP supports both local explanations of individual predictions and global insights such 

as feature importance rankings, interaction values, summary plots, dependence plots, 
and clustering visualizations, greatly enhancing model interpretability.  
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4. SQUEEZING PREDICTION 
 

 

Fig. 1 Flowchart for Squeezing Prediction 
 

The sequence of procedures for this study is illustrated in Fig.1. First, RMR data were 
gathered literature review and open datasets assembled into the study dataset. Next, as 
described in Chapter 2, the K values were converted to correspond with the support 
pattern, and log Q was used as a parameter instead of raw Q because 84.75 % of the Q 
values were below 1, 14.41 % ranged from 1 to less than 20, and only 0.84 % were 20 
or higher. Then, to address the imbalance between classes with and without squeezing 
occurrence, oversampling was performed using the SMOTE technique while 
simultaneously removing outliers. Finally, the data were split into test and training sets at 
a 2:8 ratio, and squeezing was predicted using SVM, MLP, Random Forest, and Gradient 
Boosting models. 
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Fig. 2 Predicted classification results on test datasets 

Table 6 Performance of different predicting models 

 Precision Recall F1-score Precision Recall F1-score 

SVM    MLP   
Non-Squeezing 0.56 0.83 0.67 0.5 0.67 0.57 
Squeezing 0.92 0.73 0.81 0.85 0.73 0.79 
Total Accuracy   0.7619   0.7143 
RF    GB   
Non-Squeezing 0.67 1 0.8 0.75 1.0 0.86 
Squeezing 1 0.8 0.89 1 0.87 0.93 
Total Accuracy   0.8571   0.9048 

 
Figure 2 visually corroborates these findings by plotting predicted versus measured 

classes across 21 test samples. SVM and MLP traces exhibit frequent deviations visible 
as crossovers between red dots (measured) and blue squares (predicted) highlighting 
inconsistent classification in transitional samples. In contrast, RF and GB traces closely 
track the ground truth, with only isolated misclassifications. GB, in particular, shows 
minimal divergence, underlining its superior generalization and robustness to class 
imbalance and feature nonlinearity. 
Table 6 summarizes the performance metrics of four classification models Support 

Vector Machine (SVM), Multilayer Perceptron (MLP), Random Forest (RF), and Gradient 
Boosting (GB) applied to predict tunnel squeezing events based on D, H, log Q, RMR, K 
features. The overall accuracy increases sequentially: SVM 76.19%, MLP 71.43%, RF 
85.71%, and GB 90.48%. Notably, tree-based ensemble methods outperform the linear 
and neural classifiers, with GB achieving the highest precision, recall, and F1 scores for 
both non-squeezing and squeezing classes. 
Quantitatively, SVM attains high precision 0.92 for the squeezing class but at the 

expense of lower recall 0.73, indicating some false negatives. Conversely, its non-
squeezing recall is strong 0.83 but with modest precision 0.56, suggesting false positives. 
MLP yields balanced but lower F1-scores 0.57 non-squeezing, 0.79 squeezing, reflecting 
its limited capacity to separate overlapping class distributions in the given feature space. 
RF demonstrates substantial improvement: non-squeezing precision and recall both 

reach or exceed 0.80, and squeezing recall is 0.80 with perfect precision 1.00, resulting 
in an overall F1 of 0.89 for squeezing and 0.80 for non-squeezing. GB further refines this 
balance, producing recall values of 1.00 non-squeezing and 0.87 squeezing with high 
precision 0.75 and 1.00 respectively, yielding F1-scores of 0.86 and 0.93 and elevating 
total accuracy to over 90%. 
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 Fig. 3 ROC curves for four Models 

Fig. 3 shows the combined ROC curves for four classification models SVM, RF, GB, 
and MLP evaluated on the same test set. The corresponding AUC values are SVM = 
0.867, RF = 0.878, GB = 0.944, and MLP = 0.756. 
The ROC curve illustrates the trade-off between True Positive Rate sensitivity and False 
Positive Rate (1 − specificity) across all possible decision thresholds. A model with an 
AUC closer to 1.0 achieves better discrimination between the positive and negative 
classes. In this comparison, Gradient Boosting demonstrates the highest discriminative 
power AUC = 0.944, followed by Random Forest AUC = 0.878, and SVM AUC = 0.867. 
The MLP lagged with the lowest AUC 0.756, indicating weaker overall predictive 
performance. 
Gradient Boosting’s R   curve shows a rapid ascent to high True Positive Rates with 

minimal increase in False Positive Rate, reflecting strong performance even at low 
false-alarm levels. Random Forest follows a similar, albeit slightly less pronounced, 
pattern. SVM achieves a reasonable balance but may benefit from further tuning of its 
kernel and regularization parameters. The MLP curve is relatively flatter, suggesting that 
its current architecture and hyperparameters may not capture the underlying class 
separation as effectively.  
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Fig. 4 Results of Parameter importance analysis using SHAP 

Figure 4 presents the results of parameter-wise importance analysis performed using 
SHAP on the Gradient Boosting model trained to predict tunnel squeezing. The top panel 
shows the SHAP summary dot plot, where each point represents a single test sample's 
SHAP value for a given feature, colored by the feature's value blue for low, red for high. 
The bottom panel displays the mean absolute SHAP values as a bar chart, indicating the 
average impact of each feature on the model's output magnitude. 
The ranking of feature importance by mean |SHAP value| is RMR 1.68, D 1.36, log(Q) 

1.27, H 1.03, and K(Ex-TM) 0.28. Thus, rock mass rating RMR is the most influential 
predictor, followed by tunnel diameter D and the rock mass quality index log(Q). 
Excavation depth H also contributes substantially, while the reinforcement stiffness 
coefficient K(EXTM) has the least impact under the current dataset and model 
configuration. 
In the summary dot plot, higher RMR values (red points) shift the SHAP values positively, 

indicating that stronger rock masses increase the probability of non-squeezing 
classification. Conversely, low RMR (blue points) leads to negative SHAP contributions 
and a higher likelihood of squeezing. A similar trend is observed for D; larger diameters 
tend to increase SHAP values, aligning with the understanding that larger diameters are 
more prone to deformation and thus require higher classification probabilities for 
squeezing, depending on other covariates. 
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 The excavation depth H shows a moderate positive influence when deep red samples, 
suggesting deeper cover increases the risk of squeezing, consistent with geomechanical 
theory. The relatively low importance of K(Ex-TM) suggests that, within the range of 
support patterns considered, variations in reinforcement stiffness play a secondary role 
compared to ground properties, tunnel diameter and tunnel height.  

Additionally, the lower importance of the K value compared to previous studies can 
be attributed to the fact that, unlike open datasets where the distribution of K values 
varied drastically depending on the calculation method, the distribution of K values 
based on support patterns is relatively narrow, resulting in a reduced impact on model 
predictions. 

5. CONCLUSION 
 

This study has demonstrated the effectiveness of machine learning in predicting tunnel 
squeezing using open dataset. In this study, unlike previous studies, we computed the K 
values according to support patterns and incorporated them into the dataset. By 
leveraging four distinct classification models (SVM, MLP, RF, and GB) and incorporating 
targeted data preprocessing steps, the research achieved a comprehensive performance 
comparison under consistent testing conditions. The GB model emerged as the superior 
predictor, achieving an accuracy of 90.48%, an AUC of 0.944, and balanced precision 
and recall across both squeezing and non-squeezing classes. 

Key findings from SHAP-based interpretability analysis revealed that RMR exerts the 
greatest influence on model outputs, followed by tunnel diameter, rock mass quality index 
(log-transformed), and excavation depth. The support stiffness coefficient K exhibited a 
relatively narrow distribution range under the adopted Ex-TM support patterns and thus 
contributed minimally to predictive performance in this context. 

The superior performance of ensemble tree methods underscores their ability to 
capture complex, non-linear relationships among input variables and to diminish 
overfitting through averaging of weak learners. Gradient Boosting, in particular, showed 
notable resilience to class imbalance and sensitivity to critical geotechnical features, 
making it a robust choice for operational forecasting of squeezing. SVM and MLP models, 
while capable of reasonable discrimination, displayed limitations in handling intricate 
feature interactions without extensive kernel or architecture tuning. 
From an engineering perspective, the results validate the integration of data-driven 
predictive analytics into tunnel design and monitoring workflows. Accurate prediction of 
squeezing risk enables proactive support design adjustments, optimizing resource 
allocation and enhancing safety.  

This work also highlights several avenues for future research. First, expanding the 
dataset with site-specific monitoring records, including time-series deformation 
measurements and loads borne by support system, could enhance model generalizability. 
Second, in addition to predicting squeezing, research should also be conducted on 
developing reinforcement measures at sites where squeezing has occurred. If squeezing 
is predicted using a sufficiently large and reliable dataset, and appropriate reinforcement 
measures are determined accordingly, engineers will be able to resolve the stability and 
economic issues caused by squeezing during tunnel construction and thus carry out 
more reliable designs.  
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